
A b s t r a c t. Quantifying soil quality is important for asses-

sing soil management practices effects on spatial and temporal

variability of soil quality at the field scale. We studied the pos-

sibility of defining a simple and practical fuzzy soil quality index

based on biological, chemical and physical indicators for assessing

quality variations of soil irrigated with well water and treated urban

wastewater during two experimental years. In this study 6 proper-

ties considered as minimum data set were selected out of 18 soil

properties as total data set using the principal component analysis.

Treated urban wastewater use had greater impact on biological and

chemical quality. The results showed that the studied minimum

data set could be a suitable representative of total data set.

Significant correlation between the fuzzy soil quality index and

crop yield (R2= 0.72) indicated the index had high biological

significance for studied area. Fuzzy soil quality index approach

(R2= 0.99) could be effectively utilized as a tool leading to better

understanding soil quality changes. This is a first trial of creation of

a universal index of soil quality undertaken.

K e y w o r d s: fuzzy membership functions, principal compo-

nent analysis, soil quality, treated urban wastewater

INTRODUCTION

In recent decades, crop production systems have received

increasing attention for optimizing yields, in conserving

soil, water, and energy and protecting the environment. Soil

quality is defined as the capacity of a soil to function, within

ecosystem and land-use boundaries, to sustain biological

activity, maintain environmental quality, and promote plant,

animal, and human health (Doran and Parkin, 1994). It va-

ries dramatically with management practices (irrigation water

quality). Treated wastewater application improves soil qua-

lity, but there are reports of soil quality decline in agricul-

tural soils due to long term application of treated wastewater

(Lee et al., 2006). Therefore, assessment and prediction of

soil quality dynamics can provide a better understanding of

soil conditions and assist in establishing priorities for soil

productivity management practices (Zalidis et al., 2002).

There are uncertainties in any evaluation process due to both

data and model ambiguity which includes errors in measure-

ment, intrinsic soil variability, soil instability, conceptual

ambiguity, over-abstraction, ignoring the key factors that

can affect soil quality (McBratney and Odeh, 1997). Fuzzy

logic has a useful framework for studying the complexity of

soil quality, the uncertainty due to errors in measurement

and imprecise boundaries and qualitative knowledge asso-

ciated with site-specific soil quality evaluation (McBratney

and Odeh, 1997). Braimoh et al. (2004) indicated that fuzzy

technique is helpful for evaluating slight differences in soil

quality. Torbert et al. (2008) considered the possibility of

using fuzzy modelling theory as the fuzzy multi-attributive

approach for soil quality assessment. They defined a com-

bined fuzzy soil quality index (CFSQI) providing an in-

tegrated estimation of soil quality of a given agricultural

field. However, weights of soil indicators are not considered

in soil quality index calculation. Andrews et al. (2002b) indi-

cated that soil quality indices are the most common methods

for soil quality evaluation, due to their ease of use, flexibility

and quantification. Therefore, it is possible to define the con-

cept of a fuzzy soil quality index (FSQI) for assessment of

soil quality based on fuzzy modelling. The index can be ap-

plied to monitor spatial and temporal changes in the soil quali-

ty, instead of using the common definitions of soil quality

indicators such as soil physical, chemical and biological

properties and their processes (Lee et al., 2006). Consequ-

ently, the soil quality index should be able to compare
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different management systems for soil quality variations, to

evaluate the temporal variability in a given site, to determine

a trend and to identify the problems incurred within a field.

A comprehensive soil quality index should also be a combi-

nation of chemical, physical and biological properties. It is

important to develop a simple and effective index for eva-

luating soil quality (Aparicio and Costa, 2007).

A two year field study was conducted with the follow-

ing objectives:

– define a fuzzy soil quality index (FSQI) based on bio-

logical, chemical and physical indicators for assessing soil

quality in a wheat-maize-fallow rotation irrigated with

well water and treated urban wastewater,

– select suitable indicators by using principal component

analysis (PCA),

– provide a simple and appropriate weighting method for

calculating fuzzy soil quality index model,

– evaluate the effect of irrigation management changes on

the spatial and temporal variability of soil quality at farm

scale, and

– determine the relationship between soil quality index and

maize yield.

MATERIALS AND METHODS

A two year field experiment was carried out at the Astan

Quds experimental farm situated in the east of Mashhad

(North East of Iran), geographically located between

740460, 749280 and 4005180, 4015680 UTM (Universal

Transverse Mercator coordinate system) (Fig. 1). According

to the climatic classification of Emberger, the farm is located

in arid and semi-arid climate with the mean annual tempe-

rature of approximately 14°C and mean annual precipitation

of about 250 mm. Soils in this area are categorized as Aridi-

sols and Entisols, based on soil taxonomy system.

This experiment was laid out in an 18 ha field with crop

rotation of wheat (cv. Falat) – maize (cv. S.C-704) – fallow,

irrigated using two different types of water:

– well water for 15 years, and

– treated urban wastewater for the first time. The soil of the

experimental field was sampled in a 5 ha study area.

A systematic soil sampling layout was designed using

regular grids with 20 m spacing. At each sampling point, five

sub-samples (0-30 cm) were taken within a grid of 400 m
2

to make a composite soil sample (Fig. 1). 125 composite soil
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Astan Quds farm

Fig. 1. Geographical location of the studied area with sampling points.



samples were collected after a fallow period before (pre-

sowing) and after the application of treated urban waste-

water for wheat-maize rotations during two years (t1=2011-

2012 and t2=2012-2013). The collected soil samples were air-

dried, ground and passed through a 2 mm sieve. Eighteen

soil properties (physical, chemical and biological) affecting

maize yield and soil quality were determined using standard

laboratory procedures. Soil acidity (pH) and electrical conduc-

tivity of the saturation extract (EC) were measured in soil

extracts (Page et al., 1982). The following chemical mea-

surement procedures were used (Page et al., 1982): organic

carbon (OC) by Walkely and Black (1934) method, available

phosphorus (P) by extracting samples with sodium bicarbo-

nate solution, available potassium (K) by extracting samples

with ammonium acetate solution, total nitrogen (N) by the

Kjeldahl method, and microelements (Cu, Mn, Zn and Fe)

by diethylene triamine penta acetate (DTPA) extraction

(Lindsay and Norvell, 1978). The following physical analy-

ses were carried out (Klute, 1986): soil particle size dis-

tribution by the Bouyoucos hydrometer method, available

water capacity (AWC) by the difference between 33 and

1 500 kPa suction, and bulk density (BD) by the core method.

Fresh soil samples taken for biological properties deter-

mination were stored at 4°C (Gugino et al., 2009). Three soil

biological properties were measured (Page et al., 1982):

active carbon (AC) by potassium permanganate oxidation

method (Gugino et al., 2009), potentially mineralisable nitro-

gen (PMN) by potassium chloride extraction (Gugino et al.,

2009), and microbial biomass carbon (MBC) by fumigation-

extraction method (Vance et al., 1987). In this study, EC, pH

and soil physical properties were considered to remain the

same across time for the soil quality index. In this regard,

Safary Sanjany and Hajrasoliha (1995), in a seven-year

study, reported slight decrease in soil electrical conductivity

and no change in pH in soils irrigated with treated urban

wastewater. Plant samples were taken after harvest in the

second year to evaluate the relationship between soil quality

index and yield. Plants on one meter running row were

harvested and crop yield was estimated for each sampling

grid (400 m
2
). Then, the samples were oven-dried at 60°C to

reach a constant mass. Finally, yield of each grid was calcu-

lated as total plant dry mass (g m
-2

).

Descriptive statistics including mean, minimum and

maximumvalues, standard deviation (SD) and coefficient of

variation (CV) were determined for each soil property using

SAS software. Selecting representative indicators is of key

concern in soil quality evaluation. Ideally, these indicators

should cover a wide range of soil properties and each

should affect soil quality directly. In this study, the total

data set (TDS) consisted of eighteen soil properties

(physical, chemical and biological) that were identified as

indicators affecting soil quality in various scientific

literatures.

The principal component analysis (PCA) was used to se-

lect a representative minimum data set (MDS) affecting soil

quality (Doran and Parkin, 1994). Standardized principal

component analysis (PCA) was performed on the correla-

tion matrix as proposed byAndrews etal. (2002b) and Govaerts

et al. (2006), and principal components (PC) with Eigen-

values �1 were included in MDS. Then for each PC, variables

with weighted factor loading that fell within 10% of the

highest weighted loading were chosen as the most appro-

priate indicators for the MDS. To reduce redundancy among

the highly weighted loading of variables, Pearson corre-

lation coefficients were used for variables within each PC

(Andrews and Carroll, 2001).

After selection of representative MDS, the weight for

each indicator in TDS and MDS collections which were

used for determination of FSQI index was assigned by two

methods including the coefficient of variation method (CV),

since it is quite simple and practical, and standardized factor

analysis (FA) based on its communality (Shukla et al.,

2006). According to CV method, the variables with greater

variability in the field (CV) should receive a higher weight in

a linear model including all soil indicators:

� i i iCV CV� / � , (1)

where: � i is the weight for each variable and CVi is the

corresponding coefficient of variation.

In FA method, the communality of each indicator was

calculated and then the ratio of its communality to cumula-

tive communality of all indicators was considered as weight

of each indicator (Shukla et al., 2006).

To express the studied indicators as a grade of perfec-

tion, a fuzzy set methodology was employed in soil quality

index calculation. A fuzzy set may be defined as:

� �A x x x XA� �, ( )� , (2)

where: X = {x} is a finite set of phenomena, �A x( )is a mem-

bership function of X for subset A (Zadeh, 1965). Fuzzy

membership functions were generated for soil indicators

that are important in agricultural land use of the study area

by using the Semantic Import (SI) model. In this approach,

each variable value is converted to degrees of membership

(from 0 to 1), according to expert knowledge based on ex-

perience or conventional definitions (McBratney and Odeh,

1997). The membership function values of soil indicators

were combined using a convex combination function.

Accordingly, the joint membership function of all indicators

under consideration, defined as fuzzy soil quality index

(FSQI), was computed as follows:

FSQI MF xi ii
n� 	 � � ( )1 (3)

where: � i is the weight assigned to each indicator, MF (xi) is

the membership grade and n is the number of indicators.
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Table 1 lists fuzzy membership functions and range values

for soil indicators used to compute fuzzy soil quality index

in TDS and MDS methods. Fuzzy indicators calculations

were done based on scripts written in MATLAB used by the

author (Mathworks Inc., 2004).

After scoring and weighting the indicators, the estima-

ted FSQICV was compared to FSQIFA for validation. FSQI

indices were calculated using TDS and MDS. Regression

analysis was performed to determine the MDS efficiency as

representative of TDS. Soil physical, chemical and biologi-

cal quality was assessed by FSQI calculation based on soil

physical, chemical and biological indicators, respectively.

The relationships among all soil quality indices and maize

yield were then determined to obtain the optimum regres-

sion model. For ranking soil quality classification based on

soil quality effect on plant growth, fuzzy soil quality index

was divided into five classes (class I = very high quality to

class V = very low quality) (Gugino et al., 2009). The relati-

ve change in FSQI (�FSQI) between two soil sampling

times was computed as follows:


FSQI
FSQIt FSQIt

FSQIt
�

�2 1

1

100 . (4)

Ordinary kriging method was used to map the spatial

distribution of fuzzy soil quality index and its changes over

time as classes with continuous values (Yang et al., 2007).

The analysis was conducted using the geostatistical analyst

extension of ArcGIS 9.2. This method is used for spatial and

temporal soil quality indices changes in studying treated

urban wastewater impacts.
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Variables Model type Membership function parameters
Source of threshold/

Membership function

� 
 �

OC (%)

Sigma

0.5 1.68 3 Torbert et al. (2008)

K (mg kg-1) 160 205 250 Mallarino et al. (2003),

Gugino et al. (2009)

MBC (mg kg-1) 0 150 300 Masto et al. (2007)

PMN (�g kg-1) 5 10 15 Gugino et al. (2009)

AC (mg kg-1) 150 600 1 050 Gugino et al. (2009)

AWC (cm3 cm-3) 0.04 0.17 0.3 Gugino et al. (2009)

a b c d

pH

Trapezoidal

5.4 6.3 7.2 7.7 Gugino et al. (2009)

EC (dS m-1) 0 0.5 2 10 Glover et al. (2000)

P (mg kg-1) 6 12 20 50 Tisdale et al. (1993),

Gugino et al. (2009)

N (%) 0.05 0.25 0.5 0.8 Hazelton and Murphy (2007),

Mohammadrezaei et al. (2012)

Fe (mg kg-1) 2 10 25 40 Malakouti and Tehrani (1999)

Mn (mg kg-1) 5 9 30 50 Malakouti and Tehrani (1999)

Zn (mg kg-1) 0.5 2 6 8 Lindsay and Norvell (1978)

Cu (mg kg-1) 0.1 0.5 2 4 Lindsay and Norvell (1978)

BD (Mg m-3) 0.7 0.9 1.4 1.6 Hao et al. (2008)

� m �

Sand (%)

Gaussian

0 40 80 Braimoh et al. (2004)

Silt (%) 0 35 70 Braimoh et al. (2004)

Clay (%) 0 25 50 Braimoh et al. (2004)

Lower threshold (a, �), lower baseline (
), upper threshold (d, �), optimal (b, c, m). OC – organic carbon, MBC – microbial biomass

carbon, PMN – potentially mineralisable nitrogen, AC – active carbon, AWC – available water capacity, EC – electrical conductivity,

BD – bulk density.

T a b l e 1. Membership functions and range values of chemical, physical and biological properties of studied soil



RESULTS AND DISCUSSION

Descriptive statistics of soil properties measured at two

sampling times (Table 2) indicate a high variability of soil

indicators following Wilding (1985) classification (soil pro-

perties with CV more than 35% have high variability).

Minimum and maximum CV were recorded for pH (3.1%)

and Mn (47.73%), respectively (Table 2).

As shown in Table 2, cultivation effects and treated

urban wastewater application during two growing seasons

played a greater role on soil biological properties following

wheat-maize cultivation irrigated with treated urban waste-

water. Hence, it is essential to study soil biological indica-

tors for soil quality evaluation because of their important

role in crop growth and improving soil nutrients status

(Glover et al., 2000). Active carbon is an indicator of the

fraction of soil organic matter that is readily available as

a carbon and energy source for the soil microbial community

(Gugino et al., 2009). The research by those authors showed

that active carbon is a good indicator of soil quality response

to changes in crop and soil management, usually responding

to management practices much faster than total soil organic

carbon. Farming practices and their effects on soil organic

matter decomposition and plant uptake can reduce minimum

values of organic carbon and major soil nutrients (Gugino et

al., 2009). However, larger mean and maximum values of

major and minor soil nutrients illustrate the positive role of

treated urban wastewater application; similar results was re-

ported by Feizi (2001). Soil with higher nutrient contents

after fallow period has better quality for next growing sea-

son crop. In this study, soil quality indices were calculated

for the TDS and MDS indicators selected using principal

component analysis (PCA) (Table 3). Table 3 shows that

variables can be grouped into statistical components based
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Variables

t1 t2

Min Max Mean CV Min Max Mean CV

Chemical properties

EC (dS m-1) 1.13 3.82 2.28 40.66 – – – –

pH 7.21 7.95 7.55 3.10 – – – –

OC (%) 0.31 1.52 0.89 34.71 0.27 1.60 0.95 36.50

P (mg kg-1) 5.21 28.68 17.59 41.45 4.44 26.99 16.91 35.28

K (mg kg-1) 201.11 459.68 331.88 27.27 172.38 430.95 320.17 23.40

N (%) 0.03 0.153 0.09 40.40 0.027 0.18 0.10 38.24

Fe (mg kg-1) 1.56 3.72 2.78 23.84 1.94 4.46 3.34 22.73

Cu (mg kg-1) 0.91 2.28 1.62 23.30 1.86 3.37 2.59 14.98

Mn (mg kg-1) 2.13 13.34 6.95 47.74 2.83 13.66 7.35 44.94

Zn (mg kg-1) 0.50 2.38 1.13 47.25 0.65 3.10 1.51 47.39

Biological properties

AC (mg kg-1) 214.46 594.65 443.41 24.38 273.50 662.90 505.91 22.35

PMN (�gN g-1) 1.60 7.30 5.24 31.59 2.20 7.90 5.79 29.06

MBC (mg kg-1) 43.68 247.92 144.52 43.36 96.38 351.84 205.95 35.90

Physical properties

Clay (%) 4.27 24.72 15.36 36.19 – – – –

Silt (%) 40.00 58.00 48.62 8.43 – – – –

Sand (%) 29.28 43.28 36.02 8.77 – – – –

AWC (cm3 cm-3) 0.13 0.21 0.16 14.31 – – – –

BD (Mg m-3) 1.32 1.55 1.43 4.84 – – – –

t1 – first soil sampling time before application of treated urban wastewater, t2 – second soil sampling time after application of treated urban

wastewater in second year, CV – coefficient of variation method. Explanations as in Table 1.

T a b l e 2. Descriptive statistics of soil chemical, physical and biological properties for two sampling times



on their correlation structure. Within each PC, the variable

with the highest factor loading was selected as the most

important contributor to the PC for MDS. PC1 had the

highest eigenvalue (7.742) and included more variables with

similar factor loading than other PCs. Since PC1 had no

variable with loadings > |0.40|, the variables with loadings

�|0.25| were considered for better interpretation. In PC1, the

highest weighted variables were N, OC, Mn, Zn, Cu, MBC,

AC and AWC (Table 3). These variables were selected as ef-

fective indicators of soil quality changes resulting from ma-

nagement practices (Gugino et al., 2009). To reduce redun-

dancy among the highly weighted variables for a particular

PC, Pearson correlation coefficients and correlation sums

were determined for each variable with high eigenvectors

within PC1 (Table 4).

Soil N was the variable with the highest factor loading

as the most important contributor to the PC1, hence it was

selected for MDS. Thus, the variables with the highest

correlation sum are considered to be the best representatives

of the group. In this regard, Zn and Mn followed by OC and

Cu had the highest correlation sum, but they were excluded

from the MDS because of having high correlations with N

and MBC. MBC, AC and AWC had the lowest correlation

sums, but only MBC was retained for the MDS and AWC

and AC were eliminated as discussed earlier. In PC2 and

PC3, clay and sand percentages had the highest factor

loadings and were chosen for the MDS. Both K and P were

highly weighted variables in PC4. K was the variable with

the highest factor loading and was included in MDS. P was

selected as effective indicator of soil quality for MDS

because of its availability in calcareous soils of dry land

agriculture (Tunesi et al., 1999) and also its importance as

soil quality indicator for soil quality index calculation in

agricultural fields irrigated with treated wastewater

(Andrews et al., 2002b). Lee et al. (2006) also introduced

available P as effective soil quality indicator for a crop

rotation system. Thus, any expert can employ the options to

select or eliminate the indicators from the final MDS based
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Components PC1 PC2 PC3 PC4 COM

Eigenvalue 7.742 1.927 1.304 1.161

% of variance 43.015 10.707 7.249 6.455

Cumulative (%) 43.015 53.722 60.971 67.426

Factor loading/eigenvector variables

pH 0.218 -0.154 0.123 0.122 0.449

EC (dS m-1) 0.185 0.175 0.342 -0.162 0.508

P (mg kg-1) 0.204 0.031 0.222 0.496 0.673

K (mg kg-1) 0.215 0.106 0.038 0.555 0.738

OC (%) 0.327 -0.099 -0.129 -0.133 0.887

N (%) 0.334 -0.062 -0.096 -0.024 0.883

Fe (mg kg-1) 0.235 -0.016 0.340 0.211 0.629

Mn (mg kg-1) 0.277 -0.058 -0.124 0.078 0.627

Zn (mg kg-1) 0.300 -0.049 -0.144 -0.025 0.728

Cu (mg kg-1) 0.283 0.059 0.072 -0.028 0.635

MBC (mg kg-1) 0.330 -0.051 -0.118 -0.082 0.873

PMN (�gN g-1) 0.218 -0.103 0.026 -0.429 0.601

AC (mg kg-1) 0.251 -0.186 -0.081 -0.122 0.581

Sand (%) 0.039 0.410 -0.556 0.150 0.766

Clay (%) 0.088 0.605 0.006 -0.119 0.782

Silt (%) 0.070 0.369 0.408 -0.249 0.709

AWC (cm3 cm-3) 0.270 -0.040 -0.141 -0.175 0.587

BD (Mg m-3) 0.100 0.436 -0.162 -0.022 0.479

PC – principal component. Underlined factor loadings are considered highly weighted when within 10% of variation of the absolute

values of the highest factor loading in each PC, and underlined factor loadings in bold type represent the soil properties selected as MDS.

T a b l e 3. Selection of minimum data set (MDS) through principal component analysis



on their simplicity of sampling, measurement cost and inter-

pretation of results (Dalal and Moloney, 2000). In summary,

six variables, namely N, MBC, P, K, clay and sand per-

centage obtained from 4 PCs with eigenvalues above 1 were

selected for MDS. Most of these soil quality indicators

included are suggested by Doran and Parkin (1994).

Therefore, the PCA provide the choice of selecting effective

indicators of soil quality as a minimum data set (MDS) from

initial large total data sets (Govaerts et al., 2006). Based on

communality values, PCA indicated that OC, N and MBC

with communality (COM) > 0.85 and pH and BD with com-

munality (COM)< 0.50 are the most and the least important

attributes, respectively (Table 3). Indeed, high communality

estimates indicate higher share of variance explained by the

variable (Johnson and Wichern, 1992), hence they should be

preferred over variables with low communality estimate.

The linear relationship between FSQICV and FSQIFA for

TDS indicator method (R
2

= 0.99) shows that FSQICV and

FSQIFA provide similar soil quality assessment in our study

area (Fig. 2a). Since the computation of communality of each

variable requires PCA that, theoretically, is more complica-

ted than CV method, variables weighting by the coefficient of

variation method (CV) is more straightforward. Therefore,

for the study of soil quality, FSQICV was replaced with

FSQIFA index. As shown in Fig. 2b, the linear regression of

FSQICV between MDS and TDS sets was R
2

= 0.951,

confirming that MDS set is sufficient for soil quality

assessment.

FSQICV was calculated for each aspect (soil chemical,

biological and physical properties). Figure 3 illustrates the

spatial and temporal variations in soil quality aspects affec-

ted by treated urban wastewater use. Soil physical quality

index with mean value of 58% represented the moderate

physical quality of studied soil. Virto et al. (2010) showed

that the conventional farming systems had lower physical

quality than other management systems. Soil biological

quality increased dramatically following cultivation and use

of treated urban wastewater. However, soil chemical quality

index did not change significantly. Thus, monitoring soil

biological indicators changes can be useful for farmers who

plan to change management practices to improve soil quality

(tillage reduction, use of new cover crops, addition of

organic fertilizers).

Analysis of spatial dependence of soil quality indices

showed an isotropic behaviour (Table 5). It is probably

due to a low variability of soil formation factors as well as
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Variables OC N Mn Zn Cu MBC AC AWC

OC 1 0.859 0.879 0.929 0.860 0.766 0.863 0.869

N 0.859 1 0.931 0.924 0.885 0.696 0.906 0.877

Mn 0.879 0.931 1 0.904 0.863 0.913 0.841 0.861

Zn 0.929 0.924 0.904 1 0.833 0.905 0.811 0.858

Cu 0.860 0.885 0.863 0.833 1 0.899 0.853 0.814

MBC 0.766 0.696 0.913 0.905 0.899 1 0.906 0.874

AC 0.863 0.906 0.841 0.811 0.853 0.906 1 0.791

AWC 0.869 0.877 0.861 0.858 0.814 0.874 0.791 1

Correlation sum 7.028 7.081 7.195 7.167 7.011 6.962 6.975 6.947

Explanations as in Table 1.

T a b l e 4. Pearson correlation coefficients and their sums for each variable with high factor loadings for PC 1

Fig. 2. Linear relationship between: a – FSQIFA-TDS and FSQICV -TDS, b – FSQICV -TDS and FSQICV-MDS.
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soil management practices. Semivariogram models and

best-fitted model parameters are presented in Table 5 and

Fig. 4. Semivariograms were used to establish relation bet-

ween spatial continuity and the range of spatial dependency.

The experimental semivariogram shows the variance of

sample values in different lag distances. FSQICV in two samp-

ling times showed positive nugget, which could be a result

of sampling error, short range variability, random and inhe-

rent variability (Trangmar et al., 1985). The nugget to sill

ratio represents the spatial dependency of soil properties.

Spatial dependency can be defined as strong, moderate,

weak or pure nugget based on the nugget to sill ratio < 25,

25-75, >75, or = 100%, respectively. It is considered as

weak if the fitting R
2
< 0.50 (Trangmar et al., 1985). The

nugget to sill ratio showed a strong spatial dependence for

FSQICV t( )1
(t1: first soil sampling time before application of

treated urban wastewater) which might be attributed to

fallow condition before starting wheat-maize rotations.

FSQICV t( )2
(t2: second soil sampling time after application

of treated urban wastewater in 2nd year) were moderately

spatially dependent imprinted by extrinsic factors such as

soil cultivation and wastewater irrigation. Due to waste-

water application, FSQICV lost the strong spatial dependen-

ce, which might be caused by a decrease in spatial dependen-

cy of soil indicators used in FSQICV calculation. The range

of semivariogram for FSQICV t( )2
(75.7 m) increased

compared to FSQICV t( )1
(70.5 m), thereby reflecting the

influence of soil management practices, which might be due to

uniform wastewater application compared to well water

application and chemical fertilizer applied as an earlier

management practice.

To explain vast differences in soil biological and chemi-

cal qualities, score changes in each indicator were examined

in two time intervals (Fig. 5). Results showed that the impro-

vement of soil biological quality is due to increased score of

MBC, AC and PMN. Cultivation and treated urban waste-

water factors had minor effects on PMN as its mean value

was much smaller than the optimum value (15 µgN g
-1

dw

soil/week). PMN is interpreted as soil capacity to convert

organic nitrogen into inorganic forms, and has a direct rela-

tionship with the amount of soil active and total organic

carbon and aggregate stability. Hence, including legumes in

crop rotation is useful strategy for increasing microbial bio-

mass responsible for nitrogen mineralization (Gugino et al.,

2009). The slight increase in soil chemical quality may be

attributed to the soil copper score reduction and the slight

increase in the amount of soil macronutrients after maize

harvest, probably due to larger plant uptake. Soil copper

concentration exceeded its optimum level, leading to a de-

crease in its score. However, no signs of copper toxicity

were observed in maize, as copper concentration in plant
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Fig. 3. Spatial and temporal variations in soil quality indices at two

sampling times: a – FSQI-chemical, FSQI-biological and FSQI-

physical for first time, b – FSQI-chemical, and c – FSQI-biological

between two times.

a

b

c

Variables Model Nugget (CO)
Sill

(CO+C)

Range effect

(m) R2 Nugget/

Sill (%)

Spatial

class

FSQICV t( )1
Exponential 39.30 312.00 70.50 0.91 12 Strong

FSQICV t( )2
Spherical 98.30 332.40 75.70 0.97 29 Moderate


FSQI Spherical 9.76 19.53 169.50 0.97 49 Moderate

FSQICV t( )1
, FSQICV t( )2

, and 
FSQI – fuzzy soil quality index at two soil sampling times and their changes. Explanations as in Table 2.

T a b l e 5. Parameters of the best-fitted variogram model for soil quality indices and their changes

FSQI chemical FSQI biological

FSQI (chemical) - t1 FSQI (chemical) - t2

FSQI (biological)- t1 FSQI (biological) - t2

FSQI physical

F
S
Q

I
F

S
Q

I
F

S
Q

I

Sampling grids



samples was about 0.0032 mg g
-1

dry matter (DM). This

concentration may be attributed to the increased levels of

soil available nitrogen and phosphorus resulting in decrease

of Cu uptake by plant (Zhang and Raun, 2006).

For assessing soil quality, FSQI index was divided into

five classes (I-V) (Gugino et al., 2009): grade I (FDQI> 85%)

and grade II (FDQI: 70-85%) for fertile and relatively fertile

soils for plant growth, grade III (FDQI: 55-70%) for soils

with medium quality having some limitations for plant growth,

grade IV (FSQI: 40-55%) and grade V (FDQI <40%) as

relatively infertile and infertile soils having high limitations

for plant growth. According to this classification, the soils

under study are included in classes II, III, IV and V based on

FSQICV. The kriging map of FSQICV in two sampling times

showed that low quality soils (classes V and IV) were distri-

buted in the middle part, southwest and southeast parts of the

studied area. However, in second soil sampling after apply-

ing treated urban wastewater, low quality soils were chan-

ged into medium quality and high quality ones (classes III

and II) (Fig. 6). At the first sampling time, percentages of

soil samples in classes V, IV, III and II were 37.6, 17.6, 31.2,

and 13.6%, respectively. In the second sampling time, these

proportions changed to 32, 10.4, 38.4, and 19.2%. Temporal

changes of FSQICV among different sampling grids was

about 5%, with more improvement in soil quality of infertile

and relatively infertile sites (5-11%) compared to the rela-

tively fertile and moderately fertile sites (1-4%). Zhang et al.

(2004) proposed that as soil is heterogeneous, the area can

be divided into different zones with more homogeneous

levels of soil quality. Thus, it can be concluded that FSQICV

index can be used to identify various management zones

based on spatial and temporal changes in soil quality and crop

yield under field-scale (Fig. 6). In general, management

practices in conventional systems involve the application of

large amounts of inorganic fertilizers and pesticides, re-

duced use of organic amendments, continuous tillage and
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a

b

Fig. 4. Experimental semivariograms and the fitted models for

Fuzzy soil quality index at: a, b – two soil sampling times, and c – their

changes.

c

Fig. 5. Score changes of soil indicators between two sampling times for: a – TDS, and b – MDS. Explanations as in Table 1.

a

Separation distance (m)

S
e
m

iv
a
ri
a
n
c
e

S
e
m

iv
a
ri
a
n
c
e

S
e

m
iv

a
ri
a

n
c
e

t1

t2 t1

t2

b



300 M. GHAEMI et al.

b

Fig. 6. Fuzzy soil quality index maps produced at: a, b – two soil

sampling times, and c – their spatial-temporal changes. Explana-

tions as in Table 2.

c

a

a

b

Fig. 7. Linear model fitted to the following pairs: a – FSQIMDS and

maize yield, b – FSQICV - chemical and maize yield, c – FSQICV –

physical and maize yield, d – FSQICV – biological and maize yield.
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irrigation, and mechanized harvesting (Huang et al., 2007).

These practices decrease soil quality under dense cropping

systems (Andrews et al., 2002b). Thus, the implementation

of appropriate management strategies such as use of organic

wastes, reduction of soil tillage, and inclusion of legumes in

crop rotations, can partly improve soil consistency and its

quality since crop residues addition will increase total soil

nitrogen and organic matter, thereby directly affecting carbon

and nitrogen accumulation in soil (Huang et al., 2007). To

evaluate the effects of soil quality index on yield, relation-

ships between soil chemical, biological and physical aspects

of soil quality and maize yield were evaluated (Fig. 7).

The results showed that FSQICV explains significantly

the large proportion (R
2
= 0.72) of the within-field yield

variability (Fig. 7a), suggesting that soil quality can reflect

the crop yield potential (Shukla et al., 2006). Similar corre-

lation levels were observed for soil chemical and biological

indices of soil quality. Therefore, the quality indices of soil

chemistry (R
2

= 0.77) and soil biology (R
2

= 0.72) were the

highest. Relationship between maize yield and physical qua-

lity index was much weaker (R
2

= 0.355). Thus, manage-

ment changes in chemical and biological aspects resulted in

more changes in yield.

CONCLUSIONS

1. The results of this study showed that the relationships

between soil factors and land productivity may be well evalua-

ted by fuzzy mathematicalmethods. Fuzzy soil quality index

provides the proper interpretations of soil quality as a grade

of perfection associated with uncertainties adjustment and

filtration. The method has a high potential for monitoring

the effects of soil management changes over time.

2. Principal component analysis facilitates the selection

of soil biological, chemical, and physical properties to de-

rive soil quality index and monitor the effects of manage-

ment practices on soil functions. The use of minimum data

set could save time and costs associated with the compu-

tation of these indices.

3. Variables weighting determined by the coefficient of

variation method provides a straightforward way to combi-

ne soil properties in assessing soil quality.

4. Furthermore, treated urban wastewater may be used to

improve soil quality, but it is essential to evaluate the spatial

and temporal variability of soil quality as a result of heavy

metals accumulation and crop yield reduction in long term.

5. The combination of fuzzy sets and ordinary kriging

indicated considerable spatial variations in soil quality at

field scale. Although, in general, soil quality indices defi-

nition based on physical, chemical and biological indicators

can provide a comprehensive understanding of management

strategies affecting soil quality in long time, but this is a first

trial of creation of a universal index of soil quality under-

taken in this study.
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